
Advanced Git
IVS demonstration exercise

Viktor Malík Petr Stodůlka Pavel Odvody

Red Hat

April 21, 2021

1

Prerequisites

• Basic knowledge of Git commands for:
• creating commits (git add, git commit)
• inspecting current state (git status, git diff)
• inspecting history (git log, git show)
• working with remotes (git pull, git push)
• working with branches (git checkout, git branch)
• merging branches (git merge, git rebase)

2

”Advanced” work with Git

Let's start

• We’ll write a simple tool for counting characters, words, and lines in a file
(similar to the wc utility)

• We start with a pre-initialized repo containing very basics of the tool:
https://github.com/viktormalik/git-workshop

• The repo contains:
• source file wc.c
• testing file testfile
• Makefile
• .gitignore

4

https://github.com/viktormalik/git-workshop

Current status of the repo

Add	basics	of	the	wc	tool

Add	testfile	for	testing	of	the	wc

Validate	number	of	arguments

Add	.gitignoremaster

5

Basic team synchronisation
Every member implements a different feature in their master

Add	basics	of	the	wc	tool

Add	testfile	for	testing	of	the	wc

Validate	number	of	arguments

Add	.gitignore

Add	line	countingmaster

Add	basics	of	the	wc	tool

Add	testfile	for	testing	of	the	wc

Validate	number	of	arguments

Add	.gitignore

Add	words	countingmaster

6

Basic team synchronisation
The second one to push must do a merge (and resolve a merge conflict)

Validate	number	of	arguments

Add	.gitignore

Add	line	counting

Add	words	counting

Merge	branch	'master'	of	github.com:viktormalik/git_workshopmaster

7

Better team synchronisation

• This is not a good practice!
• Always implement new features in separate branches.
• Potential merge conflicts should be resolved in the feature branch.
• Ideally, merging into master should be always done using pull requests

• They allow other team members to comment on the changes
• Changes can be reviewed before they get into master
• Master always contains a working and approved version of the project

8

Using a feature branch
Let us add help into the tool using a separate branch add_help

Add	.gitignore

Add	line	counting

Merge	branch	'master'	of	github.com:viktormalik/git_workshopmaster

Add	help	for	the	wc	utilityadd_help

9

Using a feature branch
The state of master after rebase:

Add	.gitignore

Add	line	counting

Merge	branch	'master'	of	github.com:viktormalik/git_workshop

Add	help	for	the	wc	utilitymaster

10

Moving branches
We have 2 branches pointing to the same commit and we want to move one
backwards.

Merge	branch	'master'	of	github.com:viktormalik/git_workshop

Add	help	for	the	wc	utilitymaster

Add	counting	by	custom	separatorown-separator,	option-opt

11

Moving branches
This can be done using git reset HEAD ̂

Merge	branch	'master'	of	github.com:viktormalik/git_workshop

Add	help	for	the	wc	utilitymaster,	option-opt

Add	counting	by	custom	separatorown-separator

12

Moving branches
After adding a new commit to options-opt:

Merge	branch	'master'	of	github.com:viktormalik/git_workshop

Add	help	for	the	wc	utilitymaster

Add	counting	by	custom	separatorown-separator

Optimise	getting	CLI	optionsoption-opt

13

Moving branches
options-opt can be now merged into master while own-separator remains a feature
branch in development.

Merge	branch	'master'	of	github.com:viktormalik/git_workshop

Add	help	for	the	wc	utility

Optimise	getting	CLI	optionsmaster

Add	counting	by	custom	separatorown-separator

14

Rebasing feature branches
We add more commits to the feature branch and then rebase it onto master (to
avoid creation of a merge commit).

Add	help	for	the	wc	utility

Optimise	getting	CLI	optionsmaster

Add	counting	by	custom	separator

More	robust	CLI	options	checkown-separator

15

Rebasing feature branches
We made a mistake during the rebase, which we had to fix with an additional
commit.

Add	help	for	the	wc	utility

Optimise	getting	CLI	optionsmaster

Add	counting	by	custom	separator

More	robust	CLI	options	check

Fix	error	done	during	rebaseown-separator

16

Rebasing feature branches
It is possible to merge the “fix commit” into one of the previous commits using
interactive rebase (git rebase -i).

Add	help	for	the	wc	utility

Optimise	getting	CLI	optionsmaster

Add	counting	by	custom	separator

More	robust	CLI	options	checkown-separator

17

Interactive rebase

• One of the most important Git features in the modern pull request-based
workflow.

• Allows to edit, reorder, merge (squash), or drop commits.
• Rewrites history – should be only used on feature branches.
• Never rewrite history of master!

• Other developers would not be able to do git pull.

18

Copying commits from other branches
It is possible to copy commits from other branches (e.g. commits implementing
useful features from co-workers feature branches) using git cherry-pick.

Handle	successive	whitespaces	when	counting	wordsmaster

[Recursion	1/3]	Enable	multiple	counters	and	use	new	output	format

[Recursion	2/3]	Refactoring:	process	the	file	inside	process_file()

[Recursion	3/3]	Count	only	regular	files

[Recursion	4/3]	Implement	recursive	file	traversalrecursion

19

Copying commits from other branches
After moving 3 commits from recursion into multiple-files:

Handle	successive	whitespaces	when	counting	wordsmaster

[Recursion	1/3]	Enable	multiple	counters	and	use	new	output	format

[Recursion	2/3]	Refactoring:	process	the	file	inside	process_file()

[Recursion	3/3]	Count	only	regular	files

Support	multiple	input	filesmultiple-files

20

Copying commits from other branches
If the commits are altered in multiple-files, it may be needed to use skip when
rebasing recursion onto multiple-files.

Handle	successive	whitespaces	when	counting	wordsmaster

Enable	multiple	counters	and	use	new	output	format

Refactoring:	process	the	file	inside	process_file()

Count	only	regular	files

Support	multiple	input	filesmultiple-files

21

Hunting bugs in Git history
• We often discover a bug that was certainly introduced somewhere in the Git

history.
• There is a revision in the past where certain test works correctly.
• However, the test does not work now.

• Git offers git bisect that uses binary search to localise the commit that
caused the bug.

• git bisect start starts bisecting.
• git bisect good marks a commit that does not contain the bug.
• git bisect bad marks a commit contains the bug.
• git bisect skip marks a commit that cannot be evaluated.

• The process can be automated using a script that returns 0 on success and a
non-zero result on failure.

22

Hunting bugs in Git history
• We often discover a bug that was certainly introduced somewhere in the Git

history.
• There is a revision in the past where certain test works correctly.
• However, the test does not work now.

• Git offers git bisect that uses binary search to localise the commit that
caused the bug.

• git bisect start starts bisecting.
• git bisect good marks a commit that does not contain the bug.
• git bisect bad marks a commit contains the bug.
• git bisect skip marks a commit that cannot be evaluated.

• The process can be automated using a script that returns 0 on success and a
non-zero result on failure.

22

Hunting bugs in Git history
• We often discover a bug that was certainly introduced somewhere in the Git

history.
• There is a revision in the past where certain test works correctly.
• However, the test does not work now.

• Git offers git bisect that uses binary search to localise the commit that
caused the bug.

• git bisect start starts bisecting.
• git bisect good marks a commit that does not contain the bug.
• git bisect bad marks a commit contains the bug.
• git bisect skip marks a commit that cannot be evaluated.

• The process can be automated using a script that returns 0 on success and a
non-zero result on failure.22

Git tips and tricks

Cloning repositories with a long history

• If a repo has a long history, it may take long time to clone it.
• If the entire history is no needed, it is possible to use a shallow copy:
git clone --max-depth N

• Try it with the Linux kernel:
git clone --max-depth 1 https://github.com/torvalds/linux

24

Signing commits

• By default, it is not possible to verify that a certain commit was truly created
by the person who is stated as the author.

• Theoretically, anyone can set your name and email as theirs and commit on
your behalf.

• To resolve this problem, Git offers signing commits using GPG keys.
• GitHub offers a nice tutorial on how to setup commit signing:
https://help.github.com/en/github/
authenticating-to-github/signing-commits

25

https://help.github.com/en/github/authenticating-to-github/signing-commits
https://help.github.com/en/github/authenticating-to-github/signing-commits

Signing commits

• By default, it is not possible to verify that a certain commit was truly created
by the person who is stated as the author.

• Theoretically, anyone can set your name and email as theirs and commit on
your behalf.

• To resolve this problem, Git offers signing commits using GPG keys.
• GitHub offers a nice tutorial on how to setup commit signing:
https://help.github.com/en/github/
authenticating-to-github/signing-commits

25

https://help.github.com/en/github/authenticating-to-github/signing-commits
https://help.github.com/en/github/authenticating-to-github/signing-commits

Setup your environment
There are various possibilities on how to ease your life with Git:

• Git prompt
• It is possible to setup Bash prompt such that it shows the current branch, state of

the directory, etc.
• There are many tutorials on how to set the prompt
• Some alternative shells (e.g. Fish, zsh) include Git prompt by default

• IDE/Editor support
• It is useful to see which lines were added/removed/changed from HEAD.
• Most IDEs and editors offer a way to setup this.

• Use tools for history inspection
• There is a number of tools for an easier history traversal
• E.g. tig, gitk, …

26

Setup your environment
There are various possibilities on how to ease your life with Git:

• Git prompt
• It is possible to setup Bash prompt such that it shows the current branch, state of

the directory, etc.
• There are many tutorials on how to set the prompt
• Some alternative shells (e.g. Fish, zsh) include Git prompt by default

• IDE/Editor support
• It is useful to see which lines were added/removed/changed from HEAD.
• Most IDEs and editors offer a way to setup this.

• Use tools for history inspection
• There is a number of tools for an easier history traversal
• E.g. tig, gitk, …

26

Setup your environment
There are various possibilities on how to ease your life with Git:

• Git prompt
• It is possible to setup Bash prompt such that it shows the current branch, state of

the directory, etc.
• There are many tutorials on how to set the prompt
• Some alternative shells (e.g. Fish, zsh) include Git prompt by default

• IDE/Editor support
• It is useful to see which lines were added/removed/changed from HEAD.
• Most IDEs and editors offer a way to setup this.

• Use tools for history inspection
• There is a number of tools for an easier history traversal
• E.g. tig, gitk, …

26

Setup your environment
• Command aliases

• Many Git commands are quite long (or have many options).
• It is possible to setup short aliases for most commonly used commands.
• Git offers a way to set aliases:
git config --global alias.co checkout
...
or edit $HOME/.gitconfig:
[alias]
co = checkout
...

• An alternative is to setup aliases via shell
27

Useful links

• Atlassian Advanced Git Tutorials
https://www.atlassian.com/git/tutorials/advanced-overview

• GitHub Guides
https://guides.github.com

• GitHub Help
https://help.github.com/en/github

28

https://www.atlassian.com/git/tutorials/advanced-overview
https://guides.github.com
https://help.github.com/en/github

TL;DR

What you should take out of this talk:
• Learn and practice interactive rebase
• Read what Git tells you, there are often good hints (e.g. for undoing things)
• Keep master in good shape

Thank you for the attention!
Your feedback is welcome!

https://forms.gle/otcXSjBXX1hjT8fZA
29

	''Advanced'' work with Git
	Git tips and tricks

