
Advanced Git
IVS demonstration exercise

Viktor Malík Petr Stodůlka Pavel Odvody

Red Hat

March 31, 2023

1

Prerequisites
• Basic knowledge of Git commands for:

• creating commits (git add, git commit)
• inspecting current state (git status, git diff)
• inspecting history (git log, git show)
• working with remotes (git pull, git push)
• working with branches (git checkout, git branch)
• merging branches (git merge, git rebase)

• Git commands cheatsheet:
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet

2

https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet

Git cherry pick
• git cherry-pick allows to copy a commit from one branch to another

36a1053	Commit	A

4dcc30c	Commit	Bmaster HEAD

3b3791b	Commit	C

2c00a87	Commit	Dbranch

git cherry-pick 3b3791b 36a1053	Commit	A

4dcc30c	Commit	B

61f1dd5	Copy	of	commit	Cmaster HEAD

3b3791b	Commit	C

2c00a87	Commit	Dbranch

3

Git cherry pick
• git cherry-pick allows to copy a commit from one branch to another

36a1053	Commit	A

4dcc30c	Commit	Bmaster HEAD

3b3791b	Commit	C

2c00a87	Commit	Dbranch

git cherry-pick 3b3791b

36a1053	Commit	A

4dcc30c	Commit	B

61f1dd5	Copy	of	commit	Cmaster HEAD

3b3791b	Commit	C

2c00a87	Commit	Dbranch

3

Git cherry pick
• git cherry-pick allows to copy a commit from one branch to another

36a1053	Commit	A

4dcc30c	Commit	Bmaster HEAD

3b3791b	Commit	C

2c00a87	Commit	Dbranch

git cherry-pick 3b3791b 36a1053	Commit	A

4dcc30c	Commit	B

61f1dd5	Copy	of	commit	Cmaster HEAD

3b3791b	Commit	C

2c00a87	Commit	Dbranch

3

Git commit ranges

• 2756e30..af94919 selects all commits from
Commit D (inclusive) to Commit B (exclusive)

• af94919^ gives the parent of Commit B (Commit A)

• Hence, 2756e30..af94919^ selects the commit
range including Commit B

• Note: the order of references does not matter.
2756e30..af94919^ = af94919^..2756e30

bfb8f1a	Commit	A

af94919	Commit	B

fe278f1	Commit	C

2756e30	Commit	D

4

Git commit ranges

• 2756e30..af94919 selects all commits from
Commit D (inclusive) to Commit B (exclusive)

• af94919^ gives the parent of Commit B (Commit A)

• Hence, 2756e30..af94919^ selects the commit
range including Commit B

• Note: the order of references does not matter.
2756e30..af94919^ = af94919^..2756e30

bfb8f1a	Commit	A

af94919	Commit	B

fe278f1	Commit	C

2756e30	Commit	D

4

Git commit ranges

• 2756e30..af94919 selects all commits from
Commit D (inclusive) to Commit B (exclusive)

• af94919^ gives the parent of Commit B (Commit A)

• Hence, 2756e30..af94919^ selects the commit
range including Commit B

• Note: the order of references does not matter.
2756e30..af94919^ = af94919^..2756e30

bfb8f1a	Commit	A

af94919	Commit	B

fe278f1	Commit	C

2756e30	Commit	D

4

Git commit ranges

• 2756e30..af94919 selects all commits from
Commit D (inclusive) to Commit B (exclusive)

• af94919^ gives the parent of Commit B (Commit A)

• Hence, 2756e30..af94919^ selects the commit
range including Commit B

• Note: the order of references does not matter.
2756e30..af94919^ = af94919^..2756e30

bfb8f1a	Commit	A

af94919	Commit	B

fe278f1	Commit	C

2756e30	Commit	D

4

”Advanced” work with Git

Let's start

• We’ll write a simple tool for counting characters, words, and lines in a file
(similar to the wc utility)

• We start with a pre-initialized repo containing very basics of the tool:
https://github.com/viktormalik/git-workshop

• The repo contains:
• source file wc.c
• testing file testfile
• Makefile
• .gitignore

6

https://github.com/viktormalik/git-workshop

Current status of the repo

Add	basics	of	the	wc	tool

Add	testfile	for	testing	of	the	wc

Validate	number	of	arguments

Add	.gitignoremaster

7

Basic team synchronisation
Every member implements a different feature in their master

Add	basics	of	the	wc	tool

Add	testfile	for	testing	of	the	wc

Validate	number	of	arguments

Add	.gitignore

Add	line	countingmaster

Add	basics	of	the	wc	tool

Add	testfile	for	testing	of	the	wc

Validate	number	of	arguments

Add	.gitignore

Add	words	countingmaster

8

Basic team synchronisation
The second one to push must do a merge (and resolve a merge conflict)

Validate	number	of	arguments

Add	.gitignore

Add	line	counting

Add	words	counting

Merge	branch	'master'	of	github.com:viktormalik/git_workshopmaster

9

Better team synchronisation

• This is not a good practice!
• Always implement new features in separate branches.
• Potential merge conflicts should be resolved in the feature branch.
• Ideally, merging into master should be always done using pull requests

• They allow other team members to comment on the changes
• Changes can be reviewed before they get into master
• Master always contains a working and approved version of the project

10

Using a feature branch
Let us add help into the tool using a separate branch add_help

git checkout -b add_help
git commit -m "Add help for the wc utility"

Add	.gitignore

Add	line	counting

Merge	branch	'master'	of	github.com:viktormalik/git_workshopmaster

Add	help	for	the	wc	utilityadd_help

11

Using a feature branch
Then, we open a pull request (PR) from add_help to master, review it, and merge it
using the “rebase” strategy.
The state of master after the PR is merged:

Add	.gitignore

Add	line	counting

Merge	branch	'master'	of	github.com:viktormalik/git_workshop

Add	help	for	the	wc	utilitymaster

12

Moving branches
We start working on a new feature (branch own-separator) only to realize that we
need to implement something else before. So, we create another branch option-opt.
But now, we have two branches pointing to the same commit and we need to move
one backwards.

Merge	branch	'master'	of	github.com:viktormalik/git_workshop

Add	help	for	the	wc	utilitymaster

Add	counting	by	custom	separatorown-separator,	option-opt HEAD

13

Moving branches
Instead of deleting and re-creating option-opt, we can move it one commit back:

git checkout option-opt
git reset HEAD^

Merge	branch	'master'	of	github.com:viktormalik/git_workshop

Add	help	for	the	wc	utilitymaster,	option-opt HEAD

Add	counting	by	custom	separatorown-separator

14

Moving branches
After adding a new commit to options-opt:

Merge	branch	'master'	of	github.com:viktormalik/git_workshop

Add	help	for	the	wc	utilitymaster

Add	counting	by	custom	separatorown-separator

Optimise	getting	CLI	optionsoption-opt HEAD

15

Moving branches
options-opt can be now merged into master while own-separator remains a feature
branch in development.

Merge	branch	'master'	of	github.com:viktormalik/git_workshop

Add	help	for	the	wc	utility

Optimise	getting	CLI	optionsmaster HEAD

Add	counting	by	custom	separatorown-separator

16

Rebasing feature branches
We add more commits to the feature branch and then rebase it onto master (to
avoid creation of a merge commit). This introduces a merge conflict which we
need to resolve using a mergetool (we’re using meld).

git checkout own-separator
git commit -m "More robust ..."
git rebase master
[... merge conflict ...]
git mergetool

Add	help	for	the	wc	utility

Optimise	getting	CLI	optionsmaster

Add	counting	by	custom	separator

More	robust	CLI	options	checkown-separator

17

Rebasing feature branches
We made a mistake during the rebase, which we had to fix with an additional
commit.

Add	help	for	the	wc	utility

Optimise	getting	CLI	optionsmaster

Add	counting	by	custom	separator

More	robust	CLI	options	check

Fix	error	done	during	rebaseown-separator

18

Rebasing feature branches
It is possible to merge the “fix commit” into one of the previous commits using
interactive rebase (git rebase -i master):
Opens up an interactive editor:
pick Add counting by custom separator
fixup Fix error done during rebase
pick More robust CLI options check

Add	help	for	the	wc	utility

Optimise	getting	CLI	optionsmaster

Add	counting	by	custom	separator

More	robust	CLI	options	checkown-separator

This merges the second (originally last)
commit into the first one:

19

Interactive rebase

• One of the most important Git features in the modern pull request-based
workflow.

• Allows to edit, reorder, merge (squash), or drop commits.
• Rewrites history – should be only used on feature branches.
• Never rewrite history of master!

• Other developers would not be able to do git pull.

20

How to rewrite commit history
Option 1: edit commits via interactive rebase

Running interactive rebase and selecting edit for the relevant commits:
pick c853f71 unify whitespaces (replace t by 4 spaces)
pick 4fe8acb extend gitignore: added .test-playground
pick 1b7ccf1 Add just comments into the code
edit e94003b Improve processing of the cmdline parameters
pick b5917e8 cmdline parsing: filename is not positional anymore
pick 43b6520 Check the input file has been opened

How to know the right commits? Use git blame.

21

How to rewrite commit history
Option 2: using fixup commits

Commit with the --fixup option:
$ git log --oneline -3
43b6520 Check the input file has been opened
b5917e8 cmdline parsing: filename is not positional anymore
e94003b Improve processing of the cmdline parameters
$ git commit --fixup e94003b
$ git commit --fixup b5917e8

Now, using interactive rebase with --autosquash will take care of everything:
git rebase master --interactive --autosquash

22

Copying commits from other branches
It is possible to copy commits from other branches (e.g. commits implementing
useful features from co-workers feature branches) using git cherry-pick.

The recursion branch:

3a417e1	Handle	successive	whitespaces	when	counting	wordsmaster

e13e79f	[Recursion	1/3]	Enable	multiple	counters	and	use	new	output	format

66d3e89	[Recursion	2/3]	Refactoring:	process	the	file	inside	process_file()

96e2313	[Recursion	3/3]	Count	only	regular	files

fc2cc92	[Recursion	4/3]	Implement	recursive	file	traversalrecursion

23

Copying commits from other branches
Now, let’s create a new branch multiple-files, cherry-pick the first three commits
from recursion, and add a new commit on top:

git checkout -b multiple-files
git cherry-pick e13e79f^..96e2313
git commit -m "Support ..."

Equivalent cherry-pick range:
recursion@{4}..recursion@{1}

Handle	successive	whitespaces	when	counting	wordsmaster

[Recursion	1/3]	Enable	multiple	counters	and	use	new	output	format

[Recursion	2/3]	Refactoring:	process	the	file	inside	process_file()

[Recursion	3/3]	Count	only	regular	files

Support	multiple	input	filesmultiple-files HEAD

24

Copying commits from other branches
Finally, we rewrite the cherry-picked commits:
edit 9abab39 [Recursion 1/3] Enable multiple counters and use new ...
reword 2c403cc [Recursion 2/3] Refactoring: process the file inside ...
reword f85bb09 [Recursion 3/3] Count only regular files
pick Support multiple input files

Then, we try to rebase recursion on top of multiple-files:
git checkout recursion
git rebase multiple-files
[... merge conflict during applying [Recursion 1/3] ...]

Git tried to apply the first commit from recursion (e13e79f) but the commit is already in
multiple-files. Git failed to recognise that since we altered the commit.
The solution is to use git rebase --skip for such commits.

25

Hunting bugs in Git history
• We often discover a bug that was certainly introduced somewhere in the Git

history.
• There is a revision in the past where certain test works correctly.
• However, the test does not work now.

• Git offers git bisect that uses binary search to localise the commit that
caused the bug.

• git bisect start starts bisecting.
• git bisect good marks a commit that does not contain the bug.
• git bisect bad marks a commit contains the bug.
• git bisect skip marks a commit that cannot be evaluated.

• The process can be automated using a script that returns 0 on success and a
non-zero result on failure.

26

Hunting bugs in Git history
• We often discover a bug that was certainly introduced somewhere in the Git

history.
• There is a revision in the past where certain test works correctly.
• However, the test does not work now.

• Git offers git bisect that uses binary search to localise the commit that
caused the bug.

• git bisect start starts bisecting.
• git bisect good marks a commit that does not contain the bug.
• git bisect bad marks a commit contains the bug.
• git bisect skip marks a commit that cannot be evaluated.

• The process can be automated using a script that returns 0 on success and a
non-zero result on failure.

26

Hunting bugs in Git history
• We often discover a bug that was certainly introduced somewhere in the Git

history.
• There is a revision in the past where certain test works correctly.
• However, the test does not work now.

• Git offers git bisect that uses binary search to localise the commit that
caused the bug.

• git bisect start starts bisecting.
• git bisect good marks a commit that does not contain the bug.
• git bisect bad marks a commit contains the bug.
• git bisect skip marks a commit that cannot be evaluated.

• The process can be automated using a script that returns 0 on success and a
non-zero result on failure.26

Git tips and tricks

Cloning repositories with a long history

• If a repo has a long history, it may take long time to clone it.
• If the entire history is no needed, it is possible to use a shallow copy:
git clone --max-depth N

• Try it with the Linux kernel:
git clone --max-depth 1 https://github.com/torvalds/linux

28

Signing commits

• By default, it is not possible to verify that a certain commit was truly created
by the person who is stated as the author.

• Theoretically, anyone can set your name and email as theirs and commit on
your behalf.

• To resolve this problem, Git offers signing commits using GPG keys.
• GitHub offers a nice tutorial on how to setup commit signing:
https://help.github.com/en/github/
authenticating-to-github/signing-commits

29

https://help.github.com/en/github/authenticating-to-github/signing-commits
https://help.github.com/en/github/authenticating-to-github/signing-commits

Signing commits

• By default, it is not possible to verify that a certain commit was truly created
by the person who is stated as the author.

• Theoretically, anyone can set your name and email as theirs and commit on
your behalf.

• To resolve this problem, Git offers signing commits using GPG keys.
• GitHub offers a nice tutorial on how to setup commit signing:
https://help.github.com/en/github/
authenticating-to-github/signing-commits

29

https://help.github.com/en/github/authenticating-to-github/signing-commits
https://help.github.com/en/github/authenticating-to-github/signing-commits

Setup your environment
There are various possibilities on how to ease your life with Git:

• Git prompt
• It is possible to setup Bash prompt such that it shows the current branch, state of

the directory, etc.
• There are many tutorials on how to set the prompt
• Some alternative shells (e.g. Fish, zsh) include Git prompt by default

• IDE/Editor support
• It is useful to see which lines were added/removed/changed from HEAD.
• Most IDEs and editors offer a way to setup this.

• Use tools for history inspection
• There is a number of tools for an easier history traversal
• E.g. tig, gitk, …

30

Setup your environment
There are various possibilities on how to ease your life with Git:

• Git prompt
• It is possible to setup Bash prompt such that it shows the current branch, state of

the directory, etc.
• There are many tutorials on how to set the prompt
• Some alternative shells (e.g. Fish, zsh) include Git prompt by default

• IDE/Editor support
• It is useful to see which lines were added/removed/changed from HEAD.
• Most IDEs and editors offer a way to setup this.

• Use tools for history inspection
• There is a number of tools for an easier history traversal
• E.g. tig, gitk, …

30

Setup your environment
There are various possibilities on how to ease your life with Git:

• Git prompt
• It is possible to setup Bash prompt such that it shows the current branch, state of

the directory, etc.
• There are many tutorials on how to set the prompt
• Some alternative shells (e.g. Fish, zsh) include Git prompt by default

• IDE/Editor support
• It is useful to see which lines were added/removed/changed from HEAD.
• Most IDEs and editors offer a way to setup this.

• Use tools for history inspection
• There is a number of tools for an easier history traversal
• E.g. tig, gitk, …

30

Git and IDEs/Editors
Overcome The Doorway Effect of switching to your terminal, examples:

• VSCode
• Highlight added/changed/removed lines
• Git blame for each line
• Commit, push, pull etc.

• Vim
• git-gutter

• Display line status on the side
• vim-fugitive

• Full fledged TUI for Git right in your Vim
• Commit, push, pull etc.
• <Esc>:G-cciExample commit<Esc>:x-

31

Git and IDEs/Editors
Overcome The Doorway Effect of switching to your terminal, examples:

• VSCode
• Highlight added/changed/removed lines
• Git blame for each line
• Commit, push, pull etc.

• Vim
• git-gutter

• Display line status on the side
• vim-fugitive

• Full fledged TUI for Git right in your Vim
• Commit, push, pull etc.
• <Esc>:G-cciExample commit<Esc>:x-

31

Git and IDEs/Editors
Overcome The Doorway Effect of switching to your terminal, examples:

• VSCode
• Highlight added/changed/removed lines
• Git blame for each line
• Commit, push, pull etc.

• Vim
• git-gutter

• Display line status on the side
• vim-fugitive

• Full fledged TUI for Git right in your Vim
• Commit, push, pull etc.
• <Esc>:G-cciExample commit<Esc>:x-

31

Setup your environment
• Command aliases

• Many Git commands are quite long (or have many options).
• It is possible to setup short aliases for most commonly used commands.
• Git offers a way to set aliases:
git config --global alias.co checkout
...
or edit $HOME/.gitconfig:
[alias]
co = checkout
...

• An alternative is to setup aliases via shell
32

Keep your repo clean

• Delete merged/obsolete branches (locally)
• git branch -d doesn’t always work (especially with rebases)
• git branch -D works but be careful not to delete something important

• Same applies for remote branches
• git push --delete <remote> <branch>
• or enable auto-delete branch on your PRs
• or use GitHub/GitLab/…web UI

• git prune removes unreachable objects (branches, tags, etc.)

33

Other interesting git commands

• git difftool – open mergetool for a specific commit and file
• git worktree – checkout a branch into a directory
• git submodule – embed another git repository
• git grep – grep the entire repository
• git describe – find tags related to commit
• git reflog – the last recovery option when you break your repo

34

Useful links

• Atlassian Advanced Git Tutorials
https://www.atlassian.com/git/tutorials/advanced-overview

• GitHub Guides
https://guides.github.com

• GitHub Help
https://help.github.com/en/github

35

https://www.atlassian.com/git/tutorials/advanced-overview
https://guides.github.com
https://help.github.com/en/github

TL;DR

What you should take out of this talk:
• Learn and practice interactive rebase
• Read what Git tells you, there are often good hints (e.g. for undoing things)
• Keep master in good shape

Thank you for the attention!
Your feedback is welcome!

https://forms.gle/2D4LfsYz5MGjDfWL7
36

	''Advanced'' work with Git
	Git tips and tricks

